
solvers and derivatives

Jean Utke1

1University of Chicago and Argonne National Laboratory

Sisiphus Meeting
Feb. 16 2010

Sisiphus 2010
Utke :”solvers and derivatives”, 1

simple

context: apply automatic differentiation to models that use (linear) solvers.

have Ax = b
also have solver (source code) to do the mapping b[,A] 7→ x
want forward derivatives ẋ = A−1(ḃ[−Ȧb]) (parameter sensitivities)

want adjoints b̄ = A−T x̄ [and Ā = −A−T x̄xT = −b̄xT]
gradients for state estimates
questions

are A, b active ?
which solver is being used?
ignore the context and differentiate through with AD ?
efficiency/accuracy?

most models need an answer (not only climate research but also other subject
areas, e.g. NE, economics)

Sisiphus 2010
Utke :”solvers and derivatives”, 2

what kind of solvers?

direct / iterative
reuse the factors / derivative convergence
self-adjoint?
home grown solvers / libraries (petcs,lapack,...slap)

Sisiphus 2010
Utke :”solvers and derivatives”, 3

for example - lapack

... because I tried this myself
linear system solvers, also for least-squares solutions,
eigen/singular value problems
but lapack uses blas ...
blas = basic linear algebra subprograms

scalar,vector,vector/vector, matrix/vector,matrix/matrix
operations
variations on precision and real vs complex
total of 150 subroutines and functions in F77
F77 reference implementation (slow)
vendor specific implementations, ATLAS, Goto are optimized
for performance

Sisiphus 2010
Utke :”solvers and derivatives”, 4

lapack ... contd.

similar situation here

reference implementation on netlib

again vendor implementations optimized for speed

with type/precision variations 1.5k routines (400+ marked “auxiliary”)

observations after experimenting with a nuclear physics code

blas reference implementation is known to be slow

contains some manual code optimizations that can mislead AD tools

lapack to blas calls use a lot of difficult-to-analyze offsets into work
arrays

efficiency problems with combinations of matrix-vector and
matrix/matrix ops⇒ inefficient derivatives

one-shot implementations are not reusable across AD tools

variants caused by different activity patterns

observations apply to libraries in general
Sisiphus 2010
Utke :”solvers and derivatives”, 5

solution

near term:

use recipies of existing OpenAD capabilities for wrapping solver calls
(PatricK)

provide solutions for use of slap/petsc solvers in ice models

long term:

treat blas/solver routines as high-level intrinsics

generate derivative code & interfaces

performance advantage from explicit derivative computations

avoid pitfalls from brute force differentiations (for example problem with
dgesvd from Bastani/Guerrieri)

reusable solution

Sisiphus 2010
Utke :”solvers and derivatives”, 6

why automatic differentiation?

given: some numerical model y = f(x) : Rn 7→ Rm implemented as a
(large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state) estimation,
higher-order approximation...

1 don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2 get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3 the reverse (aka adjoint) mode yields “cheap” gradients

4 if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to debug

Sisiphus 2010
Utke :”solvers and derivatives”, 7

OpenAD overview - current

www.mcs.anl.gov/OpenAD
forward and reverse
source transformation
modular design
aims at large problems
language independent
transformation
researching combinatorial problems
current Fortran front-end Open64
(Open64/SL branch at Rice U)
uses association by address
(i.e. has an active type)

Rapsodia for higher-order
derivatives via type change
transformation

Open

Analysis

whirl

SageTo

XAIF

xerces

boost

Angel

Sage3
EDG/front − ends

XAIF

(AD source transformation)

xaifBooster

FortTk

Open

Open64

AD/

Fortran pipeline:

whirl2xaif xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Open64

Sisiphus 2010
Utke :”solvers and derivatives”, 8

www.mcs.anl.gov/OpenAD

OpenAD overview - changes

expanded language coverage
(common blocks, equivalence,
unstrucctured control flow,
intrinsics,...)
new pre- and postprocessor (python,
MITgcm consequences)
migration from Open64 to Rose
(LLNL)

Open

Analysis XAIF

xerces

boost

Angel

Rose
EDG/front − ends

XAIF

(AD source transformation)

xaifBooster

RoseTo

XAIF

RoseTo

Fort,/
Rose

P&P

Fortran pipeline:

F’

F’

xaifxaifF

F

xaifBooster

OpenAnalysis

Rose

rose rose

F F’

rose2xaif xaif2rose

Pre Post

Sisiphus 2010
Utke :”solvers and derivatives”, 9

some research toopis

adjoinable MPI
optimal local preaccumulation (scarcity)
additional parallelism from checkpointing
higher order derivatives (in parallel)
...

make it work on code <insert something here> ...

Sisiphus 2010
Utke :”solvers and derivatives”, 10

some research toopis

adjoinable MPI
optimal local preaccumulation (scarcity)
additional parallelism from checkpointing
higher order derivatives (in parallel)
...
make it work on code <insert something here> ...

Sisiphus 2010
Utke :”solvers and derivatives”, 11

some other applications

suite of reactor models
old style Fortran
equivalence, unstructured control flow,...

transport of nuclear materials (container safety)
Fortran 9X
dependecies via files
dynamic memory

forthcoming: ice sheet models (NSF and DOE projects)

needs migration to Rose

Sisiphus 2010
Utke :”solvers and derivatives”, 12

for MITgcm

installed on beagle (updated/recompiled nightly)
w. Chris (use w/o intervention)

cost function change,
adding extra output
compiler optimization
computational cost

w. Patrick 20 year 1x1 run on beagle
setup hurdle (find the right combination of modules for the sge run script)
bottleneck checkpointing via NFS (switch to local disk)

usability: remove extra steps e.g. Common Block to Module conversion,
some specific changes to non-transformed files. e.g. cost final

next step w. Chris: “high-res” run

Sisiphus 2010
Utke :”solvers and derivatives”, 13

